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The creep properties of niobium-stabilised stainless steels of carbon contents in the 
range 0.01 to 0.05% carbon can be accounted for by the general recovery theory of creep. 
The high stress dependencies of recovery and creep rate can be adequately explained 
through an internal friction stress or impedance term, retarding recovery. Measurement of 
this friction term by dislocation density and stress relaxation techniques provides the 
correct stress dependencies when applied to the modified recovery theory. 

t. Introduction 
The recovery theory of creep is based on the 
knowledge that metals harden with strain, and 
soften with time on heating [1,2]. During steady 
state creep, it was postulated that there will be 
an exact balance between strain-hardening and 
recovery, such that the steady state creep rate is 
given by 

r 
~ = ~ (1) 

where r ( =  --~a/~t) is the rate of recovery and 
h ( =  ~ / ~ )  is the strain-hardening coefficient. 
Work by Cottrell and Aytekin [3] provided 
some confirmation of this relation. The theory 
has recently acquired added importance due to 
the theoretical and experimental work of 
McLean et al [4-7] who have shown that the 
above relation is a general one and holds for 
pure metals and single phase alloys. More recent 
work on these materials has shown that the 
theory can be extended into the primary and 
tertiary stages of creep with equal success [8-11 ]. 

The theories of McLean et al [4-7] although 
very attractive due to their inherent simplicity, 
are not generally applicable to high-strength 
particle-hardened material. In general they suffer 
from an inability to predict the high stress de- 
pendence of the recovery and creep rates found 
in such materials, although McLean [7] has 
shown in principle the way in which this dis- 
crepancy arises. In addition, it has been found 
difficult to test the recovery theory on materials 
containing second phase particles, as it is often 
not easy and sometimes impossible [12] to 
�9 1970 Chapman and Hall Ltd. 

measure a value for the work hardening co- 
efficient of creep tested specimens. 

McLean's theories [4-7] assume that the 
dislocations formed during creep exist in a three- 
dimensional network, and that the growth of 
such a network, essentially by climb of  disloca- 
tions, constitutes the recovery process. If  the 
average mesh size of the network is x, the driving 
force for recovery is inversely proportional to x 
[13] and the growth rate of the average network 
size is given by 

dx M .  To 
- -  ( 2 )  

dt x 

where M = mobility factor and TD = line 
tension of  the dislocation. 

This treatment is analogous to that applied to 
normal grain growth, and the influence of 
particles in retarding the growth rate [14] can be 
applied in a similar manner. Lagneborg [15] has 
introduced an impedance factor, Z, into equation 
2 such that Z depends both on the number and 
size of the impeding particles, and on the nature 
of the particle-dislocation interaction. A growing 
network will thus experience a retarding force 
denoted by TDZ, and equation 2 then becomes 

dx MTDX(1 )2 
dt -- 7 -- Z �9 (3) 

Since it is well established that ~ oc (dislocation 
density, p)~ [4, 16] and x oc p-§ then equation 3 
becomes 

d~r_MTD~( a )~ 
r = d t 2 ~-F-~b -- Z (4) 
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where a = proportionality constant ~ 1, /s  = 
shear modulus, and b = Burgers vector. 

It has been shown [15] that the stress de- 
pendence of both the creep and recovery rates 
can vary between wide limits depending on the 
value of Z chosen. It thus appears that this 
modified recovery theory can account for the 
creep behaviour of particle-hardened material, 
providing that Z is given an appropriate value. 
Lagneborg [15] has related Z to the positive 
stress intercept on a plot of creep stress against 
Fb ,/p, b u t  is rather vague as to the physical 
nature of this paramete_r. 

The purpose of this report is to describe an 
investigation into the high temperature creep and 
recovery properties of a series of 2 0 ~  Cr, 
25 ~ Ni, 1 ~ Nb, stainless steels with carbon 
content in the range 0.01 to 0.05 ~ to produce 
varying volume fractions of particles in the form 
of  NbC. The creep results obtained have been 
related to results of stress relaxation carried out 
during hot tensile tests, and to dislocation 
density counts from thin foil electron micro- 
scopy. 

It is found that the various techniques em- 
ployed yield complementary results and enable 
a more meaningful description of the impedance 
factor Z, and its relation to the recovery theory 
to be advanced. 

2. Experimental Procedure 
The chemical compositions of the steels used are 
listed in table I. Specimens of 2.54 cm gauge 
length, 0.64cm wide were stamped from 0.064 cm 
thick sheet obtained from cold worked AGR 
reactor fuel cladding material. These were an- 
nealed in a vacuum for 30 rain at 930~ to 
produce a recrystallised structure of grain size 
20 Fm, containing spherical NbC precipitates. 

Creep tests were carried out at 750~ in a 
vacuum of ~-~ 10 -5 torr using a conventional con- 
stant load creep machine. All creep strains were 
small so that conditions approximated to those 
of constant stress. The specimen strain was 
measured to an accuracy of 3 • 10 -~ cm using a 
dial gauge. The temperature was controlled to 
• 1 ~ with less than 1 ~ temperature gradient 

over the specimen gauge length. All tests were 
allowed 2 h to reach an equilibrium temperature 
before applying the load. 

Recovery measurements were made by rapidly 
removing ~-- 10~  of  the applied load (A~r) and 
noting the induction period (At) before creep 
recommenced. The recovery rate is then given by 

r - ~ - ~ t  = -- ~-} ~o--,0 

The associated work hardening coefficient (h) 
was measured by noting the instantaneous exten- 
sion (/1~) on re-application of the stress incre- 
ment /kr  such that 

&r Act 
. . . .  ( 6 )  h ~E AE 

This procedure was not entirely satisfactory 
since it was impossible to determine the end of  
the A E period accurately using the dial gauge. 
For  this reason it was found to be more reliable 
to determine h from flow stress measurements 
made on creep tested specimens. These were ob- 
tained using a modified Instron machine at room 
temperature and at strain rates comparable with 
those measured during the creep test. The tangent 
to the flow stress curve at the creep stress (cor- 
rected for the change in modulus with tempera- 
ture), gives a measure of h. 

Stress relaxation curves were obtained at 
750~ using a hard Instron tensile machine. 
Calibration experiments indicated that plastic 
relaxation of the machine was negligible over the 
time periods and stress ranges of specimen re- 
laxation. Strain rates in the range 3.33 • 10 -~ to 
3.33 • 10 -~ sec -a were used during these tests. 
The basic relaxation measurement was made by 
arresting the Instron cross head and recording 
the decrease in load with time. A typical relaxa- 
tion curve is shown in fig. 1, in which it is seen 
that the residual stress (as) decreases smoothly 
from the initial value ~rA to a pleateau at c,~. 
Stress cycling techniques [17, 18] were employed 
to show that the same relaxation curve was 
followed even if the initial era was abruptly 
reduced to a lower value above cry. Also 

T A B L E  I Chemical composition (wt ~/o) of steels 

Designation C Cr Ni Nb  Si 

0.01C 0.008 20.4 25.5 0.6 0.68 
0.05C 0.049 20.9 24.7 0.6 0.59 

Mn S P B Co 

0.65 0.02 0.01 2 ppm 50 ppm 
0.64 0.02 0.01 2 ppm 50 ppm 
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Figure 1 Diagrammatic plot showing creep and stress relaxation. 

rapid reductions in applied stress to a value 
below o-i were followed by an initial stress rise 
(fig. 2). 
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Figure 2 Stress reduction experiments near the internal 

stress, 

Dislocation densities (p) were counted on foils 
from specimens crept into the secondary stage 
and cooled rapidly ( ~  100~ under load. 
The line intercept method [19] was used, so that 

2N 
P = 5 (7) 

where N = number of intercepts, t = thickness 

of foil (obtained from slip trace measurements), 
and L = projected length of line. Thin foils were 
prepared from deformed specimens using an 
initial chemical thinning solution [20] containing 
5 0 ~  HC1, 1 0 ~  HNO3, 5 ~  H3PO4 and 3 5 ~  
H20 at 80~ This was followed by the con- 
ventional window method using a 6 0 ~  HaPO4, 
4 0 ~  H~SO~ electrolyte at 60~ and 9 V. 
Electron micrographs were obtained using a 
Philips EM 200 microscope incorporating a 
:E 20 ~ tilting device. This enabled multiple 
diffraction conditions to be established, so that 
the maximum number of dislocations was 
counted. 

3. Results 
The steady state creep rates obtained during both 
creep and tensile tests are plotted against stress 
on a log-log basis in fig. 3. The stress exponent 
varies between 5.5 and 6.5 (depending on carbon 
level), over the majority of the stress range, but 
deviations exist at the high and low stress ex- 
tremes. At a given stress the lower carbon alloy 
creeps at a slower rate than the higher carbon 
steel. 

The recovery rate shows a similar stress 
dependence over the same stress range (fig. 4). 
Work hardening coefficients, obtained from 
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T A B L E  II Creep test data 

A Temperature constant at 7 5 0 ~  
Stress Measured strain Recovery Work hardening Calculated strain Activation 
M N / m *  rate rate (r) coefficient (h) rate 4, ( =  r/h) volume (v) 

sec -1 M N / m 2 / s e c  M N / m  2 sec -1 m 3 

128.4 2.59 x 10 -5 1.01 x 10 ~ 2.76 x 104 3.73 X 10 -5 1.5 x 10 -27 
111.0 7.83 x 10 .6 4 .22 x 10 -1 4.73 • 104 8.98 x 10 .6 1.5 X 10 .27 
103.4 7.32 x 10 .6 1.84 • 10 -1 1.73 • 104 1.06 x 10 .5 1.6 X 10 .27 

79.4 1.12 x 10 -~ 2.45 • t 0  .2 2 .96 x t04 8.18 x 10 .7 1.8 x 10 .27 
60.5 1.59 x 10 .7 4.2 • 10 -3 4.03 x 104 1.043 X 10 -7 2.1 x 10 -~7 

B Stress constant at 128.4 M N / m  2 
Temperature 
(~ 
730 7.88 x 10 -6 4.61 • 10 -~ 4.73 x 104 9.66 x 10 -6 1.0 x 10 -27 
710 2.86 X 10 -6 1.84 • 10 -1 3.66 X 104 4.82 X 10 -~ 0 .90  X 10 -27 
690 8.90 X 10 -7 2.59 • 10 -z 3.52 X 10 ~ 7.37 X 10 -7 2.1 x 10 -27 

1 M N / m  2 = 10-1h bar 

creep and tensile tests, appear to be independent 
of  stress and are given in table I[. 

Substitution of  the measured values of  r and 
h into equation 1 produces values of  is in good 
agreement with the values measured experi- 
mentally, as shown in table II. 

The activation volume (v) was obtained from 
the stress reduction tests made during recovery 

measurements [6], 

v .  Ac~ = k T  In 41/i~ (8) 

where A~r = stress decrease, il, 42 = creep rates 
before and after the stress reduction, and k, T 
have their usual meaning. Values of  v obtained 
from this equation are given in table II. 

Dislocation densities are plotted against stress 
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Figure 3 Observed stress dependence of creep rate. 
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in fig. 5. Also shown are results of Lagneborg 
[21] for a 2 0 ~  Cr, 35 ~ Ni stainless steel and 
Ishida and McLean [6] for an Fe-Mn-N alloy. 

The points can be fitted to the following relation 
over part of the stress range: 

cr = - %  + oqxb ~/~ (9) 
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Figure 6 Parabolic hardening during tensile flow. 

where a o = intercept on stress axis = friction 
stress and o~ = constant ~-~ 1.0. 

The hot tensile results followed the normal a~ 
2 . 9  

parabolic work hardening law, as shown for a ~.~ 
typical test in fig. 6, i.e. ~ ~.7~ 

�9 + c .  (10) 
g2.s I- However, restraining after relaxation resulted ~ 2.4F 

in a different flow curve, independent of  the time ~ 2.3~ 
of recovery. This is shown diagrammatically in q 2.2t 
fig. 7. Differentiating (10) gives 2.1 

c0~ X zo! 
h = a E - - 2 ~  § ( l l )  

with X = 2.02 • l0 s MN/m 2 from fig. 6. 

Equation 11 gave a value for the initial work 
hardening coefficient of the annealed material, 
h~ = 1.5 • 103 MN/m ~, for an initial extension 
of 0.5% compared with values measured on 
restraining the hardened material of h+ = hb = 
3.45 • 104 MN/m 2. Such behaviour is analogous 
to that observed during primary creep [10, 11 ] 
in which h increases by approximately an order 
of magnitude early in the creep test. 

Analysis of the relaxation curves obtained 
during the tensile tests showed that an empirical 
relationship of log (residual stress, ~,) against 
log (time) gave a good straight line over a wide 
stress range between ~A and a~. Such a plot is 
shown in fig. 8 in which it can be seen that 
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Figure 8 Log (residual load) vs. log (time) for isothermal 
relaxation. 
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T A B L E  III S t ress  relaxation data at 750~ together with friction s t ress  values 

Strain rate Carbon cr ultimate ~ru ~ a0 
sec -1 content flow stress yield stress internal stress friction stress 

wt ~ MN/m ~ MN/m 2 MN/m 2 MN/m 2 

3.33 • 10 -3 0.05 278.8 98.4 94.7 90.0 
3.33 • 10 -4 0.05 231.2 94.2 89.9 70.0 
3.33 x 10 --5 0.05 151.8 75.2 70.2 60.0 
3.33 • i0 -~ 0.01 231.2 104.4 99.8 70.0 

log cr = m' log t + 7 (12) Let 

- - I  where m' = --0.12. m' = - -  �9 
On the same figure is plotted the effective 0 

residual stress, i.e. (at --  ~), which fits a similar 
linear equation with m' = --0.33. Measured Then 
values of ~i are collected in table I I I  together ~ ----- 7t  -a/~ 

with the ultimate flow stress, macroscopic yield t = 7' or-0 
stress and strain rate. Also given are estimates of 
the friction stress, %, from fig. 5 which show the and 
same trends as Gy and cry. 

4. Discussion 
Reference to fig. 3 shows that the creep results 
are of the general form found for this type of 
stainless steel [15, 22]. Over the majority of the 
stress range, the results can be fitted to a power 
law dependence, i.e. 

d = A ~ " f ( T )  (13) 

where f ( T )  = temperature function, A = con- 
stant, and n varies between 5.5 and 6.5. 

On this graph are also plotted the ultimate 
flow stresses for corresponding strain rates ob- 
tained from tensile tests. Clearly these results fall 
on an extrapolated log ds against log cr data line, 
so that it can be assumed that similar rate con- 
trolling processes are in operation. This state- 
ment takes on a greater significance when com- 
parisons are made of the stress dependence of 
the recovery rate from separate creep tests, with 
that obtained from stress relaxation. 

During stress relaxation, it has been shown 
[17, 23] that elastic strain in the specimen and 
machine is gradually replaced by plastic strain 
in the specimen according to 

1 dcr 
= ~ (14) 

E* " dt 

where E* is the effective modulus of machine and 
specimen. 

From equation 12 and fig. 8 we have 

= 7 t  m '  

with m' negative and fractional. 

do- 
- -  = 7 "  ~o+1  (15) 
dt 

Substituting equation 15 into equation 14 we 
have 

d = A ' ~ ~  

.'. r = A '  ha ~ 

h, in the present tests, appears to be independent 
of stress, while y and hence A' would have the 
usual Arrhenius temperature dependence. Thus 
we have during relaxation 

r = A1 ~ ~  �9 (16) 

During stress relaxation, only part of the flow 
stress is recoverable, and the curves tend to a 
limiting stress value ~r~, the internal stress. Thus 
considering the network growth model of creep 
[4-7], the dislocation network is recovering not 
under the applied stress but under an effective 
stress 

a* = cr~ -- a~ (17) 

which will necessarily alter the stress dependence 
of the creep parameters. Inserting the value of 
m' = --0.33, associated with the effective stress 
~*, into equation 16 gives 

r = A 1 ~ 4 f ( T )  (18) 

The use of cr~ as a modifying factor impeding 
recovery thus produces a stress exponent for 
recovery rate in particle hardened material equal 
to that required by the recovery theories of creep 
for single phase alloys. 

The unmodified plot in fig. 8 would be ex- 
pected to give a higher exponent than 4, approxi- 
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mating the exponents found from the creep 
work. Using m' = --0.12, associated with the 
residual stress during relaxation, ~,, we have 

r = A2 ~rgf(T) �9 (19) 

This derivation does give an increased stress 
exponent, but the value is higher than that 
observed from creep tests (see fig. 4). However, 
the relaxation data was obtained within a higher 
stress range than that employed for creep. Since 
ei increases with increasing stress, the values of 
e~ in fig. 8 are higher than those which would be 
given by relaxation in the creep stress range. 
While this does not affect equation 18, it does 
give a stress exponent in equation 19 which is 
slightly high. 

From table III it will be seen that the macro- 
scopic yield stress % _~ e~. It has been shown 
that ~ can account for the increased stress 
dependence shown during creep of material 
hardened by a second phase. I f  the above 
equality is typical for metallic systems of the 
present type, a more clearly understood physical 
meaning can be given to the impeding term in 
the present investigation (Lagneborg's Z) and 
the factors that govern the yield point directly 
influence the recovery rate and its stress de- 
pendence. For the present material the largest 
influence on the yield point is likeIy to come from 
particle pinning of dislocations. The NbC pre- 
cipitates exist in a bimodal distribution with a 
separation of the smaller particles of A ~_ 
10 -5 cm. Thus the flow stress according to the 
Orowan relation 

2/~b (20) c r _  A 

is that required to bend dislocations to a radius 
of A/2.  Substituting the present value of A into 
equation 20 gives a macroscopic flow stress of 
approximately 70 to 100 MN/m 2 which is in 
good agreement with the observed values of %. 
It would therefore appear from such an argument 
that the rate of recovery of the dislocation net- 
work is limited by its inability to bow between 
the incoherent particles existing in the lattice. 
Activation volume measurements (table II) con- 
firm that the inter-particle length of dislocation 
is of the order 10 -5 cm, thus 

v = l . b . d  (21) 

where l = activated length between particles, 
b = Burger's vector, and d = activation 
distance. 
1070 

For a climb mechanism of recovery, d would 
be expected to be of the order of 1 Burger's 
vector. Substituting typical values in this equa- 
t/on gives 

10 -27 = l • b 2 

= l • 10 -20 

and 

l =  10 - T m o r  10 -Scm . 

The nearer au approaches the ultimate flow 
stress (i.e. the smaller is a*), the slower is the 
recovery rate and hence the higher the stress 
dependence. From table I l l  it is evident that for 
a given ultimate flow stress, a decrease in carbon 
content gives an increase in %, which is expected 
for non-coherent particle hardening [24]. From 
the preceding discussion it would follow that a 
decrease in carbon content would thus result in 
an increase in the stress dependence and a de- 
crease in creep rate, and hence recovery rate. The 
present results confirm this. For a given applied 
stress, the effective stress, a*, acting on the dis- 
location network is decreasing with decreasing 
carbon content. However, or* oc 1/x oc dx/dt  
and so the driving force for recovery is also 
decreasing. Thus at smaller carbon contents 
recovery is slower and better creep resistance is 
to be expected. 

The present work has indicated that both el 
and a~ can be equated with the impedance 
factor, Z, employed by Lagneborg [15] in equa- 
tion 4 as a modification to the creep recovery 
theories. Lagneborg has attempted to clarify Z 
by putting 

so that 

Z ~ __a~ (22) 

(23) 

The plot of a against (p)~ (fig. 5) for the present 
material appears to show a non-linear depend- 
ence at lower stresses similar to that found by 
Barrett and Nix [25] and Ishida and McLean 
[6]. Thus a value of % at any stress can only be 
obtained by drawing a tangent to the curve and 
extrapolating to obtain the positive stress inter- 
cept. Clearly, the higher the stress the higher the 
value of % obtained in this way, which again 
indicates why the stress exponent in equation 19 
is too high. 



A U S T E N I T I C  S T A I N L E S S  S T E E L S  

4'0, 

T 3'C 

E 

Z 

W 
2"0 

>- 
cr 
IM 
> 
O 
tO 
tJ 
r 

O 1"0 

.1 
� 9  f 

0 I I I I I 
1-0 1.1 1.2 1.3 1-4 1.5 

f 
0~ MN/m2 ~ / / ~  
n =3"0  

rl[] clrq 

[ ] / B / I X "  Oo 40 MNIm~ 
 :40 

[] 0"05 C CREEP 
r'l 0 .05 C INSTRON 

I I I I I I I I I J 
1-6 1-7 1.8 1-9 2-0 2"1 2"2 2"3 2.4 2.5 

LOG EFFECTIVE STRESS (MN/rn 21 

Figure 9 C o r r e c t e d  s t r e s s  d e p e n d e n c e  o f  r e c o v e r y  r a t e ,  

Estimated values of  ~o compare quite well with 
0.i and 0.~ in table III. Thus we can say that the 
impedance term 

Z - 0.i = 0.~ = 0.0 (24) 

Fig. 9 shows that the stress dependence of  
recovery rate is reduced from 6.1 to 4.0 by 
introducing a Z term equal to 40 M N / m  2, and 
to 3.0 when Z equals 60 M N / m  2. 

It is evident that equation 4, and hence 
equation 23, cannot apply at values of  Z greater 
than the applied stress, but as mentioned above, 
it is unlikely that 0.o, and therefore Z, remain 
constant with stress. In the low stress regime, 
diffusion can help in decreasing the effectiveness 
of  dislocation obstacles so that 0.o would be ex- 
pected to decrease. In this context, therefore, we 
have taken 0.0 to be a friction stress, i.e. the dis- 
locations are impeded on moving in the lattice. 

An estimate of  the friction stress can be 
obtained on McLean's network model. Fig. 10 
shows the usual distribution function of  indi- 
vidual link flow stresses [7]. 0.t is then the resist- 
ance to glide from the dislocation elastic forces 
only, while 0.2 is the applied stress necessary if 
there are other resistances equal to (0.2 - -  crl). 
Since the creep rate is usually expressed as 

oc 0 . ~  

then 

and 

o r  

111 

d in d n p 

~0. 0.1 0.~ 

H 
0"1 = p 0 . 2  " 

For the present results p = 6, and taking n as 
the theoretical value 4.5 predicted by the un- 
modified recovery theory, then for an applied 
creep stress of  0.2 = 140 M N / m  2 

0.1 = 105 M N / m  2 
and 

0 . 0  : ( 0 " 2  - -  0 . 1 )  = 35 M N / m  2 . 

This is near to the Z value chosen to give the 
correct stress dependence of  recovery rate. 
Clearly, if on increasing the applied stress e2, 0.1 
increases by the same amount then 0.o is a con- 
stant as is sometimes found [6, 15]. However, 
for the present series of  tests it would appear that 
0.0 is decreasing with decreasing stress and 0.2 and 
0.1 are not following each other linearly. 
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Figure 10 Distribution of number of links (No) in a three 
dimensional dislocation network, with their individual 
flow stresses. 

The present  results also demons t ra te  the 
marked  stabil i ty o f  the ne twork  of  dislocations.  
This is evident  f rom fig. 7 in which the mater ia l  
was al lowed to recover down to the in ternal  
stress and  annealed  at  this stress for  several 
hours.  On re-straining,  the mater ia l  retains a 
much  higher value o f  h than  obta ined  f rom the 
ini t ia l  extension (equat ions 10 and 11). This 
behav iour  has been observed [26] in strain-  
ha rdened  nickel. 

5. Conclusions 
(1) In  agreement  with the work  of  Lagneborg  
[15] the recovery theory o f  creep can be modif ied  
to  take  into account  the effect o f  second phase  
part icles ,  by  incorpora t ing  an impedance  factor  
(Lagneborg ' s  Z) ,  which re tards  recovery. 
(2) The  recovery rate  is slower, and  the stress- 
dependence  of  recovery rate  higher,  the larger  
the value of  Z.  
(3) The  impedance  fac tor  Z is greater  in the 
mate r ia l  conta in ing the smaller  ca rbon  content  
which apparen t ly  indicates the existence of  a 
cri t ical  carbide  size and  spacing for a m i n i m u m  
recovery rate.  
(4) Both  ai, the in ternal  stress measured  dur ing  
re laxat ion,  and ~r,, the macroscopic  yield stress, 
can  be equated with  Z and  give the theoret ica l  
stress dependence  of  recovery rate  dur ing 
relaxat ion.  
(5) Values of  %, a f r ic t ion stress, est imated f rom 
a p lo t  o f  cr against  (p)-~ are similar  to  cri and  a~ 
a n d  can be used in a similar  manner  when 
p lo t t ing  effective stresses. 
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